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1 Abstract

Predictive feedback control has been successfully used in the regulation of plate vibrations

when no reference signal is available for feedforward control. However, if a reference signal

is available it may be used to enhance regulation by incorporating a feedforward path in

the feedback controller. Such a controller is known as a hybrid controller. This paper

presents the theory and implementation of the hybrid controller for general linear systems,

in particular for structural vibration induced by acoustic noise. The generalized predictive

control is extended to include a feedforward path in the multi-input multi-output case and

implemented on a single-input single-output test plant to achieve plate vibration regulation.

There are cases in acoustic-induced vibration where the disturbance signal is not available

to be used by the hybrid controller, but a disturbance model is available. In this case

the disturbance model may be used in the feedback controller to enhance performance. In

practice, however, neither the disturbance signal nor the disturbance model is available. This

paper presents the theory of identifying and incorporating the noise model into the feedback
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controller. Implementations are performed on a test plant and regulation improvements over

the case where no noise model is used are demonstrated.

2 Introduction

Recent advancements in microprocessor technology have made it possible to successfully ap-

ply predictive feedback control theory1−11 to regulate acoustically induced vibrations without

a reference signal or disturbance model.12 However, if information about the disturbance is

known, this information may be used in the controller design to improve the ability of the

controller to regulate the plant.13 The internal noise model has been shown to enhance the

performance of the Linear Quadratic Regulator (LQR)14 if the disturbance states can be

estimated. Predictive control may likewise be extended to take advantage of disturbance

information. The disturbance information may be in the form of a noise model or the input

disturbance signal may be available. Given the present and past values of the disturbance, a

predictor may be used to estimate future disturbance values when there is coherence in the

disturbance signal.

Given the present and past values of the disturbance signal, a finite-difference equation

may be determined to model the correlation in the disturbance signal. With this finite-

difference model, future disturbance values may be estimated and incorporated into the

hybrid controller to enhance performance. In the case of single frequency disturbances,

plant regulation may be dramatically improved. As the disturbance bandwidth increases,

the regulation enhancement obtained by the disturbance predictions diminishes.

If the disturbance signal is not measurable or available for feedforward, one important

question arises if the disturbance signal can ever be recovered or estimated from the control

input and output signals. An innovative approach has been developed15 using the concept
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of a deadbeat observer to identify a system with unknown periodic disturbances. Another

approach has also been introduced16 using the concept of multi-step output prediction for

identification of the system and periodic disturbances.

The objective of this paper is to present hybrid predictive control methods including

feedback and feedforward that can be used for systems with unknown disturbances. This

paper begins with addressing the problems of system identification and disturbance estima-

tion. With unknown periodic disturbances, a new approach is developed to characterize the

relationship between the control signal and the output measurement signal. The approach

begins with the finite-difference equation in the z-domain. It is shown that the transfer func-

tion from the control input to the measurement output can be fully recovered without need

of knowing the disturbances. The disturbance-induced output is shown to be embedded in

the observer Markov parameters for the finite-difference model describing the correlation be-

tween the control signal and the output signal. Furthermore, the disturbance-induced output

can be computed and predicted. Several hybrid predictive control techniques are presented

including feedback plus feedforward and feedback with embedded feedforward. These tech-

niques are verified and compared using a simple test for reducing structural vibration induced

by acoustic noise.

3 System Identification and Disturbance Estimation

A generic block diagram of the closed-loop control system is shown in Fig. 1. There are

two fundamental steps involved in the closed-loop system. The first step is to identify a

mathematical model. The second step is to use the identified model to design a controller.

In this paper, the finited difference model is used for the process of system identfication as

well as predictive control designs. The controller may contain the disturbance information in
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the form of a feedforward transfer function or the disturbance information may be embedded

in the feedback control parameters. If feedforward is used, the controller needs to have access

to the disturbance signal. If the disturbance information is embedded in the feedback control

parameters, it will be proven that the controller needs no measurement of the disturbance

signal.

The input/output relationship of a linear system is commonly described by a finite

difference model.18 Given a system with rc control inputs, rd disturbance inputs, and m

outputs, the finite difference model (FDM) for the rc × 1 input u(k), rd × 1 input d(k) and

the m× 1 output y(k) at time k is

y(k) = α1y(k − 1) + α2y(k − 2) + · · ·+ αpy(k − p)

+ β0u(k) + β1u(k − 1) + β2u(k − 2) + · · ·+ βpu(k − p)

+ γ0d(k) + γ1d(k − 1) + γ2d(k − 2) + · · ·+ γpd(k − p) (1)

This simply means that the current output can be predicted by the past input and output

time histories. The finite difference model is also often referred to as the ARX model where

AR refers to the AutoRegressive part and X refers to the eXogeneous part. The coefficient

matrices, αi of m×m, βi of m×rc, and γi of m×rd for i = 0, 1, . . . , p are commonly referred

to as the observer Markov parameters (OMP)19−22 or ARX parameters, because they are

closely related to the deadbeat observer.

The equivalent version of Eq. (1) in the z-domain is

α(z)y(z) = β(z)u(z) + γ(z)d(z) (2)

where y(z), u(z), and d(z) are the z-transform of the data sequences y(k), u(k), and d(k),
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respectively, and

α(z) = Im − α1z
−1 − α2z

−2 − · · · − αpz−p (3)

β(z) = β0 + β1z
−1 + β2z

−2 + · · ·+ βpz
−p (4)

γ(z) = γ0 + γ1z
−1 + γ2z

−2 + · · ·+ γpz
−p (5)

where Im is an m×m identity matirx.

3.1 Single Disturbance Input

For simplicity, let us assume that there is only one disturbance, i.e., rd = 1, applied to the

system at a certain location. Furthermore, the disturbance signal d(k) for k = 1, 2, . . . , `

is known to be periodic. For a periodic signal (i.e., correlated signal), there exists a finite-

difference model such that

d(k) = η1d(k − 1) + η2d(k − 2) + · · ·+ ηndd(k − nd) (6)

where nd is the model order which is twice the number of frequencies in the disturbance

signal and ηi (i = 1, 2, . . . , nd) are the constant scalars weighting the past disturbance signal.

The maximum disturbance frequency should be less than the Nyquest frequency which is

one half of the sampling frequency. Equation (6) in the z-domain becomes

η(z)d(z) = 0 (7)

where

η(z) = 1− η1z
−1 − η2z

−2 − · · · − ηndz−nd (8)

Premultiplying Eq. (2) by η(z) and noting Eq. (7) yields

η(z)α(z)y(z) = η(z)β(z)u(z) (9)
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or equivalently

α̃(z)y(z) = β̃(z)u(z) (10)

where

α̃(z) = η(z)α(z) = Im − α̃1z
−1 − α̃2z

−2 − · · · − α̃pz−p−nd (11)

β̃(z) = η(z)β(z) = β̃0 + β̄1z
−1 + β̃2z

−2 + · · ·+ β̃pz
−p−nd (12)

Note that the order of α̃ and β̃ is p + nd whereas the order of α and β is p. Equation (10)

indicates that, for a periodic disturbance, there exists a finite-difference model mapping

exactly from the control input to the measurement output without the need of knowing the

disturbance signal. The question arises if this is true for the general case with multiple

disturbance inputs.

3.2 Multiple Disturbance Inputs

Let us now look at the case where rd > 1, i.e., multiple disturbance inputs. First, reformulate

Eq. (2) to become

α(z)y(z) = β(z)u(z) + e(z) (13)

where

e(z) = γ(z)d(z) (14)

Here e(z) is an m×1 vector, γ(z) is an m×rd matrix, and d(z) is a rd×1 vector. When d(z)

is the z-transform of a periodic signal (i.e., correlated signal) d(k), there exists an equation

identical to Eq. (7) except that the quantity η(z) in this case is a rd× rd matrix. As a result,

there should exist a finite-difference equation such that

E(z)e(z) = E(z)γ(z)d(z) = E ′(z)η(z)d(z) = 0 (15)
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where E(z) is an m×m matrix and E ′(z) is an m× rd matrix. Equation (15) implies that

E(z)γ(z)d(z)− E ′(z)η(z)d(z) = 0 (16)

or, if d(z) 6= 0, [
E(z) E ′(z)

]  γ(z)

−η(z)

 = 0 (17)

Given γ(z) of m × rd and η(z) of rd × rd, both E(z) of m ×m and E ′(z) of m × rd can be

found by solving the null space of the (m+ rd)× rd matrix

 γ(z)

−η(z)

 (18)

Equation (17) shows that there always exists a matrix E(z) such that Eq. (15) is satisfied.

Let E(z) be defined as

E(z) = I − E1z
−1 − E2z

−2 − · · · − Ep′z−p
′

(19)

Each quantity Ei (i = 1, 2, . . . , p′) is an m × m matrix. The integer p′ is the order of the

finite-difference model. Assume that the order of the disturbance signal is nd (twice the

number of disturbance frequencies). This implies that the determinant of Eq. (19) can have

the maximum number, nd, of roots. As a result, the relationship between the integers p′ and

nd should be

p′m ≥ nd = twice the number of disturbance frequencies (20)

Premultiplying Eq. (2) by E(z) and noting Eq. (15) yield

E(z)α(z)y(z) = E(z)β(z)u(z) (21)

or equivalently

ᾱ(z)y(z) = β̄(z)u(z) (22)
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where

ᾱ(z) = E(z)α(z) = Im − ᾱ1z
−1 − ᾱ2z

−2 − · · · − ᾱpz−p−p
′

(23)

β̄(z) = E(z)β(z) = β̄0 + β̄1z
−1 + β̄2z

−2 + · · ·+ β̄pz
−p−p′ (24)

The order of ᾱ and β̄ is p+p′ whereas the order of α and β is p. Equation (22) indicates that,

for any periodic disturbance, there exists a finite-difference model mapping exactly from the

control input to the measurement output without need of knowing the disturbance signal.

3.3 System Identification

If the matrix E(z) is nonsingular, Eqs. (2) and (22) produce the same system transfer function

from the control input to the measurement output, i.e.,

G(z) = ᾱ(z)−1β̄(z) = α(z)−1β(z) (25)

It is known that the inverse transform of the transfer function G(z) forms a sequence of

system Markov parameters. Equation (25) thus implies that both ᾱ(z)−1β̄(z) and α(z)−1β(z)

produce the same sequence of system Markov parameters. It is quite easy to compute the

coefficient matrices ᾱ1, . . . , ᾱp+p′ for ᾱ and β̄0, β̄1, . . . , β̄p+p′ for β̄ from input and output

sequences, u(k) and y(k) for k = 1, 2, . . . , ` (see Refs. 18-22). The coefficient matrices

ᾱ1, . . . , ᾱp+p′ and β̄0, β̄1, . . . , β̄p+p′ do not represent the actual observer Markov parameters,

because they include the information of the periodic disturbance applied to the system.

Nevertheless, they should produce the system Markov parameters for the map from the

control input to the measurement output because of Eq. (25). The system Markov parameters

can be computed recursively as shown in Refs. 18-22. From the computed system Markov

parameters, the actual observer Markov parameters α1, . . . , αp for α in Eq. (3) and β0, . . . , βp
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for β in Eq. (4) can be easily computed. The same results as shown in this section have also

been proven using the concept of the deadbeat observer15 or multi-step output prediction.16

3.4 Disturbance Identification

Equation (13) can then be used to estimate the characteristics of the disturbance inputs, i.e,

e(z) = α(z)y(z)− β(z)u(z) (26)

Using the signal e(k) that represents the inverse z-transform of e(z), the E(z) shown in

Eq. (19) can be determined to form the following finite-difference equation

e(k) = E1e(k − 1) + E2e(k − 2) + · · ·+ Ep′e(k − p′) (27)

for the disturbance-induced output error. The state-space representation of Eq. (27) is


e(k)

e(k − 1)
...

e(k − p′ + 1)

 =


E1 E2 · · · Ep′−1 Ep′
I 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0





e(k − 1)

e(k − 2)
...

e(k − p′ + 1)

e(k − p′)


(28)

The eigenvalues of the matrix 
E1 E2 · · · Ep′−1 Ep′
I 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

 (29)

provide the frequency information of the periodic disturbance applied to the system.

For the case where the disturbance input signal is white and random, the signal may be

considered as having an infinite number of frequencies, i.e., p′ →∞. For random disturbance

inputs, the computed ᾱ and β̄ satisfying Eq. (22) are still valid, as long as the integer p′ is

chosen sufficiently large. The system Markov parameters computed from ᾱ and β̄ should

approach the true values.
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4 Generalized Predictive Control (GPC)

It is the goal of the system identification technique to determine the observer Markov parame-

ters (OMP) based on input and output data. The OMP may be estimated using batch least

squares, recursive least squares, or any other appropriate system identification technique

(Ref. [11]). If the OMP of the plant is known, the future plant outputs may be predicted

using a recursive relationship as shown in Ref. [11], i.e.,

yp+q(k) = Tcup+q(k) + Bup(k − p) +Ayp(k − p) +Ddp(k − p) + Tddp+q(k) (30)

Here the vectors yp+q(k) and yp(k − p) are defined as

yp+q(k) =


y(k)

y(k + 1)
...

y(k + p+ q − 1)



yp(k − p) =


y(k − p)

y(k − p+ 1)
...

y(k − 1)


and up+q(k) and dp+q(k) are similar to yp+q(k) with y replaced by u and d, respectively.

The vectors up(k − p) and dp(k − p) are similar to yp(k − p) with y replaced by u and d,

respectively. The matrices Tc and A are

Tc =


β0

β
(1)
0 β0
...

...
. . .

β
(p+q−1)
0 β

(p+q−2)
c0 · · · β0



A =


αp α(p−1) · · · α1

α(1)
p α

(1)
p−1 · · · α

(1)
1

...
...

. . .
...

α(p+q−1)
p α

(p+q−1)
p−1 · · · α

(p+q−1)
1


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The matrix Td is similar to Tc with β replaced by γ, and B and D are similar to A with α

replaced by β and γ, respectively. In Eq. (30), p is the integer related to the system order,

q is an intermediate time step, and the prediction horizon is hp = p + q − 1. The quantity

yp+q(k) is the vector containing the predicted future plant outputs, whereas up+q(k) is the

vector containing the future control inputs yet to be determined, and dp+q(k) is the vector

containing the future disturbance inputs yet to be predicted. Also yp(k − p) is the vector

containing the past plant outputs, up(k− p) is the vector containing the past control inputs,

and dp(k − p) is the vector containing the past disturbance inputs.

The GPC algorithm is based on system output predictions over a finite horizon known

as the prediction horizon. In order to predict the future plant outputs, some assumptions

need to be made about the future control inputs and the future disturbance inputs. In

determining the future control inputs, it is assumed that control is applied only over a finite

horizon known as the control horizon. Beyond the control horizon, the control input is

assumed to be zero. In the GPC algorithm, the control horizon is always equal to or less

than the prediction horizon. In addition to the horizons, a control penalty is introduced

to limit the control effort and stabilize the closed loop system. The cost function to be

minimized in the GPC algorithm is.

J(k) = yTp+q(k)yp+q(k) + uTp+q(k)λup+q(k)

=
p+q−1∑
j=0

{[y(k + j)]T [y(k + j)] + [u(k + j)]Tλ[u(k + j)]} (31)

In Eq.(31), y(k + j) is the plant output vector, u(k + j) is the control input vector, and λ

is the control penalty scalar. For simplicity, both prediction horizon and control horizon are

set from 0 to p + q − 1 and the control penalty λ is assumed to be a positive scalar rather

than a matrix. Minimizing Eq.(31) with respect to up+q(k) and solving for up+q(k) will give
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the control sequence to be applied to the plant. The first r values of the control sequence

are applied to the r control inputs, the remainder is discarded, and a new control sequence

is calculated the next time step. In order to carry out the above process, the future plant

outputs y(k), y(k + 1), . . . , y(k + p + q − 1) must be predicted. In the regulation problem,

the desired plant output is zero. Inserting Eq.(30) into Eq.(31), minimizing with respect to

up+q(k) and taking the first r rows results in

u(k) = the first r rows of [−(T Tc Tc + λI)−1T Tc ]×

[Bup(k − p) +Ayp(k − p) +Ddp(k − p) + Tddp+q(k)] (32)

where I is an identity matrix. When λ = 0, the closed-loop system will be unstable for non-

minimum systems because the matrix Tc is rank deficient. The quantity λ must be carefully

tuned to make the system stable.

The formulation given in Eq.(32) assumes that the control horizon is equal to the

prediction horizon. Nevertheless, the control horizon may be chosen to be less than the

prediction horizon resulting in a more stable and sluggish regulator. This is achieved by

reducing the matrix Tc in Eq. (32) to become

Tc =



β0

β
(1)
0 β0
...

...
. . .

β
(q)
0 β

(q−1)
0 · · · β0

β
(q+1)
0 β

(q)
0 · · · β

(1)
0

...
...

...
...

β
(p+q−1)
0 β

(p+q−2)
0 · · · β

(hc)
0


(33)

The control sequence determined by using Eq. (33) in Eq. (32) is for a shorter control horizon,

i.e. hc < p+ q − 1. Beyond the control horizon the control input is assumed to be zero.

The formulation given in Eq. (32) differs from that given in Ref. [2-3] in two ways.

First, the current control computed by Eq. (32) will be applied at the next time step rather
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than at the present time step as required in Ref. [2-3]. This is important in implementation

because the present formulation allows time to perform computations. Second, the controller

coefficients are calculated using an intuitively recursive relationship,11 rather than solving

the Diophantine equation for future predictions.2−3 By adjusting the control horizon, the

prediction horizon, and the control cost, Eq. (32) may be tuned to yield the best results for

a given regulation problem.

Equation (32) includes a feedforward path. If the disturbance signal is measurable,

then it is placed in the dp(k − p) vector. This vector contains the last p disturbance mea-

surements. If there is correlation in the disturbance measurements such as the periodic

signal, then this correlation may be used to estimate future disturbance values and fill the

dp+q(k) vector. If there is no correlation in the disturbance signal, then the last term in

Eq. (32) is dropped. Given that correlation does exist, a finite difference model may be used

together with past disturbance measurements to predict future disturbance values. The

finite-difference model is shown in the following

d(k) + η1d(k − 1) + η2d(k − 2) + . . .+ ηndd(k − nd) = 0 (34)

In Eq. (34), nd is the disturbance order and ηj(j = 1, 2, . . . , nd) are nd × nd coefficient

matrices. In order to include the last term in Eq. (32), we need the future disturbance signal

that can be estimated by recursively solving Eq. (34) for future values of the disturbance

signal based on past disturbance measurements. As a result, the jth prediction of the

disturbance signal may be calculated by

d(k + j) = η
(j)
1 d(k − 1) + η

(j)
2 d(k − 2) + . . .+ η(j)

nd
d(k − nd) (35)

The index j will go from 0 to the prediction horizon p+q−1. The future disturbance signals

will then be estimated and the last term of Eq. (32) may be used to enhance performance.
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In practice, the disturbance signal is generally not available. The conventional design

strategy is to increase the closed-loop system damping via control feedback using the in-

put/output transfer function. The unknown disturbances are treated as input uncertainties.

In most of cases, they are considered as white, Gaussian, and random noises. The closed-loop

feedback thus designed may be stable but may not satisfy the performance requirements.

However, it has been proven in Eq. (22) that the unknown periodic disturbances are em-

bedded in the observer Markov parameters (OMP) which can be identified. With the OMP

identified, a new approach is introduced to design a feedback law that includes an embedded

forward to enhance the performance. The multi-output prediction formulation for Eq. (22)

is identical to Eq. (30) with last two terms dropped. All the terms related to the unknown

disturbances are embedded in the coefficient matrices A and B with the expense of increas-

ing the number of OMP to include the order of the disturbances. The matrix Tc remains

unchanged because it represents the control input/output map. Therefore, if it is not pos-

sible to measure the disturbance signal, the control law with embedded forward, Eq. (32),

becomes

u(k) = the first r rows of [−(T Tc Tc + λI)−1T Tc ]×

[Bup+p′(k − p− p′) +Ayp+p′(k − p− p′)] (36)

where p′ is the order of the unknown periodic disturbances.

5 Experimental Results

The GPC algorithm with feedforward and a noise predictor was implemented on a Texas

Instrument C-30 chip. The plant to be regulated is shown in Fig. 2. The box shown in Fig. 2

is made of plexiglass with an aluminum plate on top. The disturbance enters the plant
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through the loud speaker located at the bottom of the plexiglass box. The control input is

applied to the plant through the piezo mounted on the bottom center of the aluminum plate.

The plant output to be regulated is the accelerometer signal taken at the top center of the

aluminum plate.

A block diagram of the plant and control system is shown in Fig. 3. In Fig. 3 the

disturbance d is band limited to 1KHz and enters the plant at point 2. The plant output is

the accelerometer signal taken at point 3. The control input is applied to the plant at point

1 of Fig. 3. Low pass filters and amplifiers were used where appropriate. The controller has

a sample rate of 2.5 KHz. It includes the filtered and amplified accelerometer signal y, and

the disturbance measurement d, and the control signal u.

Since the implementation in this study is not adaptive, we must first estimate the

observer Markov parameters (OMP or ARX) of the plant in order to design a controller.

This is accomplished by applying two independent white noise signals (band limited to

1Kz), to point 2 of Fig. 2 and at u. With both these random inputs applied, the system

output y is measured. The two input data vectors and the one output vector are then used to

approximate a finite-difference model (FDM) of the system. It is important to note that the

FDM represents both the plexiglass box and the filters and amplifiers used in the controller

loop. The form of the model is that of Eq. (1) which in turns yields Eq. (30). The coefficient

matrices in Eq. (30) were then used to find the GPC controller coefficients shown in Eq. (32).

Figure 4 shows the autospectrum of the accelerometer signal y before control (gray

line), and after control (black line). The feedback law is based on a 12th order identified

model with the weighting λ = 0.001. The black solid line in Fig. 4 is the spectrum of

the accelerometer signal when both feedforward and feedback are applied, this is known as
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hybrid control. The dotted line in Fig. 4 was obtained with feedback only. The disturbance

applied to the plant was band limited white noise to 1000 Hz and thus no finite-difference

model can be used to predict future disturbances. Therefore the last term in Eq. (32) was

dropped.

Figure 5 shows the advantage gained by including the last term of Eq. (32) when

possible. In this case, both band limited white noise to 1000 Hz and a sine wave disturbance

of 800 Hz are applied to the plant through the speaker. In Fig. 5, the noise model was

formed based on a 2nd order FDM obtained by performing a system identification on the

disturbance signal. The resulting FDM and the past disturbance measurements were then

used to predict the future disturbance values and incorporate the last term of Eq. (32). As

seen in Fig. 5, this greatly attenuated the accelerometer signal at the disturbance frequency.

However, the performance of the controller suffers at the upper end of the spectrum due to

the large amount of control energy applied at 800 Hz.

For the case of unknown periodic disturbances, a large increase in regulation may

be obtained by performing the system identification in the presence of the disturbance. By

doing this, a disturbance model is implicitly incorporated into the identified observer Markov

parameters.

Figure 6 illustrates the disturbance model obtained by performing the system iden-

tification with the disturbance on. The figure is a pole/zero plot of the transfer function

which describes the dynamics between the control input and accelerometer output. Both

plots represent the same system (same system Markov parameters), however, the bottom

plot contains the disturbance model. In this case, the disturbance was a 200 Hz sine wave.

The plant has a mode at 300 Hz and was modeled as a 10th order system. Note the pole
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zero cancellation in the bottom plot. This plot has the same system Markov parameters as

the top plot, but has different observer Markov parameters.

Figure 7 shows the ability of a feedback controller with an embedded noise model to

cancel a sine wave disturbance. The feedback law is based on a 20th order identified model

with the weighting λ = 0.001. The disturbance in Fig. 7 is a 300 Hz tone. Since this is a

resonant frequency of the plant, regulation may be performed with little control effort. The

advantage of using the embedded noise model may be seen by comparing the dotted line to

the solid black line. Figure 7 illustrates the ability of feedback control to greatly attenuate

a periodic disturbance without the need of a reference source as in feedforward control.

Multiple sine waves may also be modeled in the observer Markov parameters (OMP),

returned by the system identification. Figure.8 illustrates the performance of a broadband

controller which was designed using the OMP containing the disturbance information of a

50th order model with the weighting λ = 0.001. The disturbance signal entering the plant

of Fig. 8 was the sum of a 300 Hz sine wave, a 1100 Hz sine wave, and band limited white

noise to 1000 Hz. When the system identification was performed with the disturbance on,

the resulting OPM contained the information of the sine wave disturbances. As can be seen

by comparing the solid line to the dotted line in Fig. 8, the embedded noise model greatly

improved regulation at the frequencies of both sine wave disturbances.

The periodic disturbances in both Fig. 7 and 8 were at resonant frequencies of the

plant. If the disturbance is at an off resonant frequency, regulation may still be performed

if the control actuator has sufficient authority. The disturbance in Fig. 9 was a 800 Hz tone

plus band limited white noise to 1000 Hz. As can be seen in Fig. 9, control of the broad

band resonant response is obtained along with a reduction of the off resonance 800 Hz tone.
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To compare feedback plus embedded disturbance model with feedback plus feedfor-

ward, the same noise and disturbance characteristics for Fig. 5 are used. Figure 11 illustrates

the regulation performance of GPC with a 14th order system. The model was determined

based on input and output data taken in the presence of white noise band limited to 1000

Hz plus an 800 Hz tone. As can be seen from Fig. 11, the controller did not completely

cancel the 800 Hz tone due to the low system order. This results from the fact that there

are not enough OMP coefficients to model both the system and disturbance characteristics.

In practice, when the disturbance propagates through the plant to the accelerometer, distur-

bance information will be contaminated by the measurement noise. As a result, an increase

in system order is required. Figure 12 compares the performance of a 20th order controller

to that of a 30th order controller. All other parameters are the same as in Fig. 11. There is

an increase in regulation with an increase in system order.

Figure 13 shows broadband results using the GPC controller. Here band limited white

noise was applied as the disturbance. The black line is the autospectrum of the accelerometer

signal when the hybrid controller of Eq. (4) was used without the last term. It is of interest to

compare the result obtained using feedback only, (dark gray line) with that of feedback with

an embedded noise model, (dotted line). In both cases no feedforward was used. However,

the system identification was performed in the presence of the disturbance for the dotted line.

For the dark gray line, the system identification was done with the disturbance off. By having

the disturbance on while gathering input and output data, the resulting system identification

will incorporate some information about how the disturbance propagates through the plant

to the accelerometer. The controller design will use this information to increase regulation

as can be seen in when comparing the dark gray line to the dotted line in Fig. 13.
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6 Concluding Remarks

It is well known that feedforward control does indeed enhance feedback control. Designing

feedback control based on the transfer function alone will not perform as well as hybrid

control for any linear systems. This paper has shown that feedforward control can be imple-

mented explicitly or implicitly. Explicit implementation requires identification of a distur-

bance model. A new approach is presented to show that the characteristics of unknown pe-

riodic disturbances are predictable and its induced vibration is controllable. In other words,

the propagation of the disturbance through the system is observable and controllable. Given

a sufficiently large system order, a system model can be identified including an embedded

disturbance model. The states of the identified model are observable but not controllable.

When the identified model is reduced to the minimum order, the reduced model provides the

exact transfer function describing the control input to system output. This means that the

system Markov parameters (i.e., pulse response function) are preserved. The disturbance-

induced output can be controlled using either predictive feedback alone or feedback plus

feedforward. In fact, predictive feedback alone can perform as well as the combination of

feedback and feedforward as evidenced by the experimental results. The key reason is that

the predictive feedback controller is capable of implicitly identifying and incorporating the

disturbance model into the control loop. The disadvantage is that the identified model is

larger than the true system model to accommodate unknown disturbances. Note that any

random disturbance can be treated as periodic disturbances with a sufficiently large number

of frequencies. As a summary, the main contribution of this paper is the development of

practical control methods for linear systems with unknown periodic disturbances. These

methods have been theoretically proven and experimentally verified.
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Figure 1: Generic block diagram of a closed-loop system

Figure 2: Plant to be Regulated
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Figure 4: Autospectrum of plant output without control (dotted line), feedback only (dot
dash line), and with hybrid control (solid line), 12th order system, 2.5 KHz sample rate.
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Figure 5: Autospectrum of plant output without control (dotted line) and with hybrid control
plus noise predictor (solid line), 12th order system, 2.5 KHz sample rate.
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Figure 6: Pole Zero plots obtained with disturbance off (top plot) and disturbance on (bottom
plot), 10th order system model, 1 KHz sampling rate, 200 Hz sine wave disturbance.
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Figure 7: Autospectrum of plant output without control (dotted line), feedback only (dashed
line), and feedback with embedded noise model (solid line), 20th order system, 1 KHz sample
rate.
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Figure 8: Autospectrum of plant output without control (dotted line), feedback (dashed
line), and feedback with embedded noise model (solid line), 50th order system, 2.5 KHz
sample rate.
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Figure 9: Autospectrum of plant output without control (dotted line) and feedback with
embedded noise model (solid line), 50th order system, 2.5 KHz sample rate.
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Figure 10: Autospectrum of plant output without control (dotted line), feedback with em-
bedded noise model (dot-dot dash line), and hybrid controller (solid line), 50th order system
for all cases, 2.5 KHz sample rate.
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Figure 11: Autospectrum of plant output without control (dotted line), and feedback with
embedded noise model (solid line), 14th order system, 2.5 KHz sample rate.
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Figure 12: Autospectrum of plant output without control (dotted line), and hybrid control
with embedded noise model, 20th order system (thin solid line), 30th order system (thick
solid line), 2.5 KHz sample rate.
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Figure 13: Autospectrum of plant output without control (dotted line), feedback (dot-dot
dash line), feedback with embdded noise model (dash-dash dot line), and hybrid control
(solid line), 38th order system, sample rate is 10 KHz.
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